COLORECTAL CANCER AND WNT SIGNALLING

.....

Group Leader **Owen Sansom** FRSE, FMEDSci FRCPS(Glasg)

> Associate Scientist Andrew Campbell

Research Scientists

Constantinos Alexandrou¹ Patricia Centeno Dustin Flanagan³ Nuray Gunduz⁴ Georgios Kanellos¹ Tamsin Lannagan⁶ Noha Mohamed Arafath Naiumudeen⁴ Alexander Raven² Johan Vande Voorde⁴ Nikola Vlahov⁶

Scientific Officers

Abdullah Alyamani John Falconer⁸ Catriona Ford⁹ Kathryn Gilroy² Tam Jamieson¹⁰ Megan Mills⁵ Rachel Ridgway

Clinical Research Fellows

Michael Gillespie Mark White

Graduate Students

Ella Gilchrist Jasmine Ho Laura Millett¹¹ Teena Thakur¹¹ Lucas Zeiger⁴

Scientific Writer Nathalie Sphyris

¹Bristol Myers Squibb ²CRUK Grand Challenge "SpecifiCancer' ³University of Glasgow/MRC ⁴CRUK Grand Challenge "Rosetta"

Colorectal cancer (CRC) is a heterogeneous disease comprising distinct molecular subgroups that differ in their histopathological features, prognosis, metastatic propensity, and response to therapy. Utilising stateof-the-art preclinical models harbouring key driver mutations, our group is interrogating the molecular mechanisms underpinning CRC. Our overarching goals are to identify early-stage diagnostic biomarkers and develop stage- and subtype-specific targeted therapies.

Accelerator Award ⁶University of Leicester/ Wellcome Trust

⁷CRUK Grand Challenge "CANCAN" ⁸McNab ⁹Astra7eneca ¹⁰CRUK/Newcastle University ¹¹CRUK Scotland Centre

⁵University of Glasgow/CRUK

.....

.....

NOTUM is a prospective target for

APC-deficient adenomas.

A Volcano plot showing genes

and wild-type small intestine

(n=3). Red, significantly altered

genes: Green, Wht antagonists

B Number of organoids formed

over multiple passages (P1, P2,

or Apc-/- conditioned medium

(CM) supplemented with NOTUM

inhibitor (NOTUMi). n = 6 mice per

VilCre^{ER}Apc^{Min/+}Notum^{+/+} (n=30),

VilCre^{ER}Apc^{Min/+}Notum^{fl/+} (n=13).

and VilCre^{ER}Apc^{Min/+}Notum^{fl/fl} (n=9)

mice aged until clinical endpoint.

mediated Wnt-pathway inhibition

Apc-mutant cells (brown). Curved

inhibition; dotted curved arrows

D Schematic depicting the

proposed model of NOTUM-

of wild-type ISCs (green) by

arrows indicate activation;

blunt-ended arrows indicate

indicate attenuation of Wnt

activity

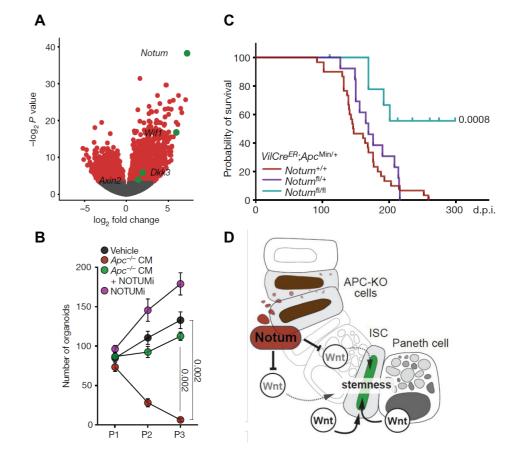
condition. C Survival of

and P3) during culture in wild-type

differentially expressed between

VilCre^{ER}Apc^{fl/+} tumour tissue (n=5)

Figure 1


early-stage disease in high-risk individuals with hereditary CRC.

Epithelial TGF^β/ALK5 engages growth-factor signalling to drive intestinal tumourigenesis with aggressive features

Building on our work with early-stage CRCs, we sought to develop means to identify so-called born-to-be-bad CRCs that are endowed with inherent metastatic potential, which enables metastasis-founder cells to disseminate before the primary tumour is clinically detectable. Indeed, histological assessment alone fell short of reliably identifying early-stage aggressive lesions destined to progress to metastatic spread By transcriptionally profiling an early-stage human CRC cohort, enriched for born-to-bebad lesions that went on to relapse, we correlated aggressive traits with elevated epithelial cellintrinsic—rather than stromal—TGFβ signalling (Figures 2A–2C), alongside oncogenic *KRAS* mutations and APC deficiency (Flanagan et al., 2022, Nature Comms).

We therefore generated

VilCre^{ER}*Apc*^{fl/+}*Kras*^{G12D/+}*Alk5*^{CA} mice, where the Alk5CA allele encoded a constitutively active form of the TGF_B/ALK5 receptor, which instigated downstream TGF^β signalling in the intestinal epithelium. We found that, in the presence of concurrent Apc and Kras mutations, epithelialspecific activation of TGFβ signalling elicited rampant acceleration of intestinal tumourigenesis, engendering dissemination-

adenomas through the adenoma-carcinoma pathway, typically entailing aberrant activation of Wnt signalling, with loss-of-function mutations in the negative Wnt-regulator APC sufficient for adenoma formation. Progression to adenocarcinoma is underpinned by the accumulation of compounding mutations in oncogenic and tumour-suppressive pathways, including KRAS, TP53, and TGF_B. In this past year, we have developed tractable models of CRC ranging from early-stage adenomas through to treatment-refractory, KRAS-mutant CRCs, with ex vivo organoid cultures adding value to our suite of *in vivo* models.

Most colorectal tumours develop from benign

The Wnt-antagonist NOTUM is a druggable

mediator of cell competition in early-stage CRC Widespread screening can detect tumours at early stages amenable to therapeutic intervention, rendering an urgent need for the validation of early-detection biomarkers and the identification of druggable targets to prevent progression of early-stage disease. We therefore sought to understand how common initiating mutations impact the dynamics of adenoma formation

Given that the inactivation of the tumour suppressor APC is a frequent early event in adenoma initiation, we sought to identify how Apc-mutant intestinal stem cells (ISCs) compete with their wild-type neighbours to achieve clonal dominance and fixation (Flanagan et al., 2021, Nature). Using gene expression profiling, we found that APC-deficient adenomas expressed an abundance of transcripts for several secreted Wnt antagonists, relative to APC-proficient tissues, with the most highly upregulated gene, *Notum*, encoding a secreted WNT deacylase that disrupted WNT ligand-

binding (Figure 1A). Culture of wild-type organoids in conditioned medium, collected from Apc-mutant cells, curtailed growth (Figure 1B), decreased the expression of ISC-associated genes, and induced differentiation. Addition of a NOTUM inhibitor (Figure 1B), or genetic deletion of *Notum* in *Apc*-mutant organoids, abolished the effects of the conditioned medium.

In VilCre^{ER} Apc^{Min/+} mice, genetic or pharmacological inhibition of NOTUM compromised the ability of Apc-mutant cells to expand and form intestinal adenomas, significantly prolonging survival (Figure 1C).

Deletion of Notum in Apc-mutant Lgr5-ISCs impaired their ability to outcompete wild-type counterparts. Interestingly, wild-type Lgr5-ISCs in the vicinity of *Apc*-mutant cells exhibited reduced expression of the WNT-regulated stemness marker SOX9, whereas cells adjacent to *Apc*-mutant *Notum*^{cKO} cells retained robust levels of SOX9, consistent with a role for secreted NOTUM in driving the differentiation of wild-type Lgr5-ISCs. Secreted NOTUM could therefore act in a paracrine fashion to inhibit Wnt signalling in neighbouring non-transformed wild-type ISCs, inducing their differentiation and withdrawal from the cell cycle, and ultimately driving their removal from the stem cell pool (Figure 1D). By contrast, WNT ligand-independent, APCdeficient, super-competitor cells could expand unabated with their progeny taking over the entire intestinal crypt.

Our findings identified NOTUM as a druggable mediator of cell competition and mutation fixation during the early stages of adenoma development. Bolstering the fitness of wild-type ISCs by inhibiting NOTUM might serve as a viable approach for preventing progression of

prone tumours with born-to-be-bad transcriptomic features. Mechanistically, epithelial TGFβ signalling induced a growthpromoting EGFR-signalling module that synergised with mutant APC and KRAS to drive MAPK signalling, sensitising tumour cells to MEK and/or EGFR inhibitors and significantly prolonging survival (Figure 2D). Our data suggested that the convergence of activated Wnt, MAPK, and TGF^β/ALK5 signalling drove mitogenic and survival pathways that could be targeted therapeutically to slow the progression of intestinal tumours with aggressive behavioural traits.

Whereas tumour-suppressive roles are often ascribed to epithelial TGF^B signalling in CRC, our study found that epithelial cell-intrinsic TGFB/ ALK5 activation synergised with Wnt and MAPK signalling to drive intestinal tumourigenesis. Indeed, we identified epithelial TGF_β/ALK5 signalling as a potentially actionable, predictive biomarker in poor-prognosis, disseminationprone early-stage CRCs that could reliably identify at-risk patients, offering an opportunity for early therapeutic intervention at a potentially curable stage. These findings were in line with the "Big Bang" model of CRC progression, which predicts that pro-invasive behaviour could be installed early in the disease trajectory. Overall, we identified epithelial TGF β signalling both as a determinant of early dissemination and a potential therapeutic vulnerability of CRCs with born-to-be-bad traits.

COLORECTAL CANCER AND WNT SIGNALLING (CONTINUED)

В

score

Enrichment

D

100

50

0.0

-0.1 -

-0.2 -

-0.3 -

NES = -2.42

-0.4 - padj = 3.7e-10

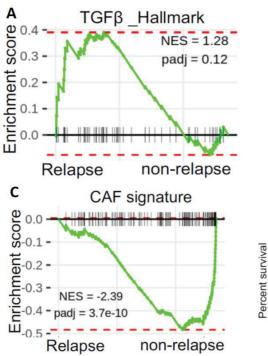

Relapse

Figure 2

Epithelial TGFβ/ALK5 signalling but not stromal content correlates with relapsing, early-stage CRCs and sensitises to MAPK-targeted therapies.

.....

A Hallmark gene set enrichment of TGFβ signalling in relapse cases compared with non-relapse samples. B, C Negative enrichment of cancer-associated fibroblast (CAF) (B) and stromal (C) signature gene sets in relapse cases compared with non-relapse samples. A–C were performed using fast gene set enrichment analysis. Benjamini-Hochberg FDR < 0.2. NES, normalised enrichment score; FDR, false discovery rate; padj, adjusted P-value (Benjamini-Hochberg multiple testing). **D** Kaplan-Meier survival curves for VilCre^{ER} Apc^{fl/+} Kras^{G12D/+} Alk5^{CA} mice treated daily with MEK1/2 inhibitor (MEKi) or EGFR inhibitor (EGFRi) and aged until clinical endpoint following tamoxifen induction n=24 untreated (grey), n=14 MEKi (red), n=10 EGFRi (blue) mice. P=1.0 $\times 10^{-4}$ (MEKi), *P*=3.0 $\times 10^{-2}$ (EGFRi); log-rank (Mantel–Cox) test.

Kras allelic imbalance drives MAPK-dependent tumour initiation but sensitizes to MEK inhibition and fails to evoke metastasis

As mentioned above, oncogenic mutations in Kras lead to the constitutive activation of downstream effector pathways, including the MAPK-signalling cascade, and cooperate to drive colorectal tumourigenesis alongside loss of the tumour suppressor Apc. Oncogenic KRAS is strongly associated with therapy resistance, particularly to treatments targeting upstream or downstream signalling nodes such as EGFR, MEK, PI3K, and mTOR. Prevailing dogma holds that KRAS is a potent oncogene, with the gain of one mutant allele dominant over the remaining wild-type copy. As such, most studies to date have focused on the gain-of-function traits of oncogenic KRAS. However, accumulating evidence has argued for the existence of selective pressures that further augment oncogenic signalling through allelic imbalances that engender either focal amplifications of oncogenic KRAS or loss-of-heterozygosity at the wild-type allele. This implies that wild-type KRAS can influence the function of oncogenic KRAS. Yet, the role of wild-type KRAS, in the context of oncogenic KRAS, remains controversial with both pro- and anti-tumourigenic roles ascribed. We sought to better understand how wild-type KRAS impacts the fitness and drug responsiveness of CRCs, harbouring oncogenic KRAS, and to ascertain its impact on the tumour initiation and progression of KRAS-mutant tumours (Najumudeen et al., in preparation).

0 50 100 150 200 Time after induction (days) Towards this aim, we developed genetically engineered mouse models, which allowed the deletion of wild-type Kras in the context of oncogenic Kras^{G12D} in the phenotypically normal premalignant intestinal epithelium, the cryptprogenitor phenotype induced by acute Apc loss, long-term APC-deficient tumour development, and the metastatic setting. In the homeostatic small-intestinal epithelium, we found that mutant KRAS^{G12D} increased MAPK signalling, promoting enterocyte proliferation and suppressing Paneth-cell differentiation, with the deletion of the wild-type allele exacerbating these phenotypes and additionally increasing the abundance of secretory goblet cells, suggesting that wild-type KRAS restrains the activity of oncogenic KRAS^{G12D} in the premalignant setting. We further found that deletion of wild-type Kras potentiated oncogenic KRAS^{G12D} activity and downstream MAPK signalling, increasing the capacity of KRAS^{G12D}-mutant APC-deficient cells to dedifferentiate and initiate tumourigenesis, suggesting that wild-type KRAS functions as a tumour suppressor in the presence of oncogenic KRAS^{G12D}. In turn, however, this rendered tumours addicted to oncogenic KRAS signalling and conferred enhanced sensitivity to MEK inhibition, unveiling an exploitable therapeutic vulnerability (Figure 3A). Conversely, the presence of wild-type KRAS rendered KRAS^{G12D}-driven tumours resistant to MEK1/2 inhibition (Figure 3A) by dampening their dependence on MAPK signalling, posing a major clinical challenge. Importantly, deletion of

Stromal signature

VilCreER; Apcfl/+; KrasG12D/+; Alk5CA Untreated

VilCreER; Apcfl/+; KrasG12D/+; Alk5CA + MEKi

VilCreER;Apcfl/+;KrasG12D/+;Alk5CA + EGFRi

P=1.0X10-4

P=3.0X10-2

non-relapse

••••••

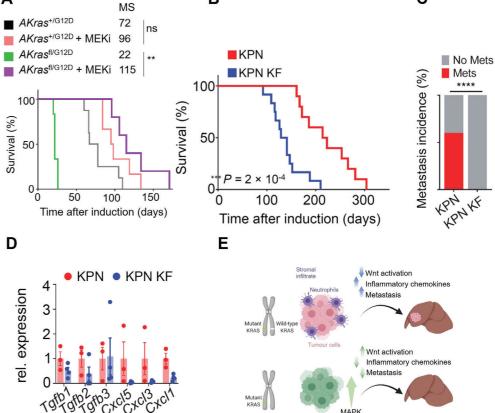

Α

Figure 3 Loss of wild-type Kras increases sensitivity to MEK inhibition and suppresses the metastatic traits of *Kras*^{G12D} colorectal tumours. **A** Kaplan–Meier survival curves for VilCre^{ER} *Apc*^{II/+} *Kras*^{+/G12D}

(*AKras*+/G12D) and

VilCre^{ER}Apc^{fl/+}Kras^{fl/G12D} (AKras^{fl/} G12D) mice, treated with MEKinhibitor (MEKi) one day post tamoxifen-induction and aged until clinical endpoint. Median survival (MS) values are indicated. Apc^{+/fl}Kras^{+/G12D}, n=8; Apc^{+/fl}Kras^{+/} ^{G12D} + MEKi, n=6; Apc^{+/fl} Krasf^{I/G12D}, n=6: Apc^{+/fl}Kras^{fl/G12D} + MEKi, n=5.***P*=0.0014, ns=not significant; log-rank (Mantel-Cox) test. **B** Kaplan–Meier survival curves for VilCre^{ER} Kras^{+/} G12D Trp53^{fl/fl} Rosa26^{N1icd/+} (KPN) and VilCre^{ER} Kras^{fl/G12D} Trp53^{fl/} ^{fl}*Rosa26*^{N1icd/+} (KPN KF) mice aged until clinical endpoint. KPN, n=10; KPN KF. n=12. Median survival (MS) values are indicated. ***P=2 ×10⁻⁴; log-rank (Mantel–Cox) test. **C** Incidence of metastasis (%) in KPN and KPN KF mice aged until clinical endpoint. Median survival (MS) values are indicated. ****P< 0.0001. KPN, n=10; KPN KF, n=12. **D** Relative expression of transcripts encoding *Tgf*β ligands and chemokines in organoids derived from KPN and KPN KF tumours. KPN, n=3; KPN KF, n=4. E Schematic depicting the mechanisms whereby loss of wild-type Kras activates Wnt signalling and reduces neutrophil recruitment, compromising the metastatic competence of KPN

KE tumours

wild-type Kras in oncogenic KRAS^{G12D}-driven, p53-mutant, aggressive tumours promoted initiation but significantly perturbed tumour progression and metastasis, reducing serrated morphological features, compromising invasiveness, and altering the tumour microenvironment. Furthermore, the loss of wild-type Kras significantly accelerated tumourigenesis and reduced survival (Figure 3B) in our aggressive NOTCH1-driven, KRAS-mutant intestinal adenocarcinoma model that metastasised to the liver (VilCre^{ER} Kras^{+/} G12D Trp53^{fl/fl} Rosa26^{N1icd/+} and VilCre^{ER} Kras^{fl/} ^{G12D}*Trp53*^{fl/fl}*Rosa26*^{N1icd/+} mice, designated KPN and KPN KF, respectively). Notably, however, loss of wild-type Kras in this model abrogated invasiveness and metastatic competence (Figure 3C). Molecularly, KPN KF tumours lacking wild-type KRAS exhibited significantly elevated Wnt-pathway activity and lacked expression of neutrophil chemoattractants (Tgfß2 and chemokines, such as Cxcl1, Cxcl3, and Cxcl5; Figure 3D) in their pre-metastatic niche, thereby blunting metastasis formation (Figures 3C and 3E). These studies provided new insights into KRAS biology and revealed a critical role for wild-type KRAS in the therapeutic resistance and metastatic proclivity of mutant KRAS-driven CRCs. These findings further suggested that, in addition to screening CRCpatients for KRAS mutation status, stratifying

В

patients for *KRAS* allelic status might discern those who would derive benefit from inhibition of downstream effector signalling.

Publications listed on page 110

COLORECTAL CANCER AND WNT SIGNALLING 67